Округление натуральных чисел. Математика. Правила округления числовых значений Порядок округления чисел

Числа округляют, когда полная точность не нужна или невозможна.

Запомните!

Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа .

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

Запомните!

Число, полученное при округлении, называют приближённым значением данного числа.

Записывают результат округления после специального знака «≈ ». Этот знак читается как «приближённо равно».

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления .

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.


После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

36 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

Число 360 — приближённое значение с недостатком , а число 370 — приближённое значение с избытком .

В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).

  • 8 659 000 = 8 659 тыс.
  • 3 000 000 = 3 млн.

Округление также применяется для прикидочной проверки ответа в вычислениях.

794 · 52 =

До точного вычисления сделаем прикидку ответа, округлив множители до наивысшего разряда.

794 · 52 ≈ 800 · 50 ≈ 40 000

Делаем вывод, что ответ будет близок к 40 000 .

794 · 52 = 41 228

Аналогично можно выполнять прикидку округлением и при делении чисел.

Числа округляют и до других разрядов - десятых, сотых, десятков, сотен и т. д.


Если число округляют до какого-нибудь разряда, то все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой, то их отбрасывают.


Правило №1. Если первая из отбрасываемых цифр больше или равняется 5, то последняя из сохраняемых цифр усиливается, т. е. увеличивается на единицу.


Пример 1. Дано число 45,769, которое нужно округлить до десятых. Первая отбрасываемая цифра - 6 ˃ 5. Следовательно, последняя из сохраняемых цифр (7) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 45,8.


Пример 2. Дано число 5,165, которое нужно округлить до сотых. Первая отбрасываемая цифра – 5 = 5. Следовательно, последняя из сохраняемых цифр (6) усиливается, т. е. увеличивается на единицу. И, таким образом, округленное число будет - 5,17.


Правило №2. Если первая из отбрасываемых цифр меньше, чем 5, то усиление не делается.


Пример: Дано число 45,749, которое нужно округлить до десятых. Первая отбрасываемая цифра - 4

Правило №3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее четное число. Т. е. последняя цифра остается неизменной, если она четная и усиливается, если - нечетная.


Пример 1: Округляя число 0,0465 до третьего десятичного знака, пишем - 0,046. Усиления не делаем, т. к. последняя сохраняемая цифра (6) - четная.


Пример 2. Округляя число 0,0415 до третьего десятичного знака, пишем - 0,042. Усиления делаем, т. к. последняя сохраняемая цифра (1) - нечетная.

В некоторых случаях, точное число при делении определенной суммы на конкретное число невозможно определить в принципе. Например, при делении 10 на 3, у нас получается 3,3333333333…..3, то есть, данное число невозможно использовать для подсчета конкретных предметов и в других ситуациях. Тогда данное число следует привести к определенному разряду, например, к целому числу или к числу с десятичным разрядом. Если мы приведем 3,3333333333…..3 к целому числу, то получим 3, а приводя 3,3333333333…..3 к числу с десятичным разрядом, получим 3,3.

Правила округления

Что такое округление? Это отбрасывание нескольких цифр, которые являются последними в ряду точного числа. Так, следуя нашему примеру, мы отбросили все последние цифры, чтобы получить целое число (3) и отбросили цифры, оставив только разряды десятков (3,3). Число можно округлять до сотых и тысячных, десятитысячных и прочих чисел. Все зависит от того, насколько точное число необходимо получить. Например, при изготовлении медицинских препаратов, количество каждого из ингредиентов лекарства берется с наибольшей точностью, поскольку даже тысячная грамма может привести к летальному исходу. Если же необходимо подсчитать, какая успеваемость учеников в школе, то чаще всего используется число с десятичным или с сотым разрядом.

Рассмотрим иной пример, в котором применяются правила округления. Например, имеется число 3,583333, которое необходимо округлить до тысячных - после округления, за запятой у нас должно остаться три цифры, то есть результатом станет число 3,583. Если же это число округлять до десятых, то у нас получится не 3,5, а 3,6, поскольку после «5» стоит цифра «8», которая приравнивается уже к «10» во время округления. Таким образом, следуя правилам округления чисел, необходимо знать, если цифры больше «5», то последняя цифра, которую необходимо сохранить, будет увеличена на 1. При наличии цифры, меньшей, чем «5», последняя сохраняемая цифра остается неизменной. Такие правила округления чисел применяются независимо от того, до целого числа или до десятков, сотых и т.д. необходимо округлить число.

В большинстве случаев, при необходимости округления числа, в котором последняя цифра «5», этот процесс выполняется неправильно. Но существует еще и такое правило округления, которое касается именно таких случаев. Рассмотрим на примере. Необходимо округлить число 3,25 до десятых. Применяя правила округления чисел, получим результат 3,2. То есть, если после «пяти» нет цифры или стоит ноль, то последняя цифра остается неизменной, но только при условии, что она является четной - в нашем случае «2» - это четная цифра. Если бы нам необходимо было выполнить округление 3,35, то результатом бы стало число 3,4. Поскольку, в соответствии с правилами округления, при наличии нечетной цифры перед «5», которую необходимо убрать, нечетная цифра увеличивается на 1. Но только при условии, что после «5» нет значащих цифр. Во многих случаях, могут применяться упрощенные правила, согласно которым, при наличии за последней сохраняемой цифрой значений цифр от 0 до 4, сохраняемая цифра не изменяется. При наличии других цифр, последняя цифра увеличивается на 1.

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

44 71≈4000 45 71≈5000

43 71≈4000 46 71≈5000

42 71≈4000 47 71≈5000

41 71≈4000 48 71≈5000

40 71≈4000 49 71≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

Например:

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

36 4 ≈360

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

47 8 1≈48 00

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

215 9 36≈216 000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

130 2 894≈130 0000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями . Результат вычисления называют прикидкой результата действий .

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:
Определите до какого разряда сделано округление:
а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд сотен тысяч,
3 – разряд миллионов.
Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 573 426≈4 573 000 разряд тысяч в)16 7 841≈17 0 000 разряд десятков тысяч.

Пример №2:
Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
Ответ: а) 5 999 994 ≈5 999 990 б) 5 999 99 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

Значащие цифры

Определение 1 .6 . Значащими цифрами в записи при­ближенного числа называются все цифры в его записи, начиная с первой ненулевой слева.

Определение 1 .7 . Первые п верными в узком смысле , если абсолютная погрешность числа не превосхо­дит половины единицы разряда, соответствующего п- йзначащей цифре, считая слева направо.

Наряду с данным определением иногда используется другое.

Определение 1 .8 . Первые п значащих цифр в записи приближенного числа называются верными в широком смысле , если абсолютная погрешность числа не превосхо­дит единицы разряда, соответствующего n- йзначащей цифре.

Чтобы округлить число до п значащих цифр, отбрасы­вают все цифры, стоящие справа от n -й значащей цифры, или, если это нужно для сохранения разрядов, заменяют их нулями. При этом:

1) если первая отброшенная цифра меньше 5, то остав­шиеся десятичные знаки сохраняют без изменения;

2) если первая отброшенная цифра больше 5, то к пос­ледней оставшейся цифре прибавляют единицу;

3) если первая отброшенная цифра равна 5 и среди ос­тальных отброшенных цифр есть ненулевые, то к после­дней оставшейся цифре прибавляют единицу;

4) если первая из отброшенных цифр равна 5 и все от­брошенные цифры являются нулями, то последняя остав­шаяся цифра оставляется неизменной, если она четная, и увеличивается на единицу, если нет (правило четной цифры).

Это правило гарантирует, что сохраненные значащие цифры числа являются верными в узком смысле, т. е. погрешность округления не превосходит половины разряда, соответствующего последней оставленной значащей цифре. Правило четной цифры должно обеспечить ком­пенсацию знаков ошибок.

Следующая теорема выявляет связь относительной по­грешности числа с числом верных десятичных знаков.

Теорема 1 .1 . Если положительное приближенное чис­ло имеет п верных значащих цифр, то его относительная погрешность δ не превосходит величины 10 1 - n , деленной на первую значащую цифру а н :

δ ≤ 10 1 - n / а н . (1.11)

Формула (11) позволяет вычислить предельную от­носительную погрешность

δ a = 10 1 - n / а н . (1.12)

1 .6 . Погрешности арифметических операций

Приведем правила вычисления погрешности результа­та различных арифметических операций над приближен­ными числами.

Относительно алгебраической суммы u = х ± у можно утверждать следующее.

Теорема 1 .2 . Предельная абсолютная погрешность суммы приближенных чисел равна сумме предельных абсолютных погрешностей слагаемых, т. е.

Δ u = Δ x + Δ y . (1.13)

Из формулы (1.13) следует, что предельная абсолют­ная погрешность суммы не может быть меньше предель­ной абсолютной погрешности наименее точного из сла­гаемых , т. е. если в состав суммы входят приближенные слагаемые с разными абсолютными погрешностями, то сохранять лишние значащие цифры в более точных не имеет смысла.

Теорема 1 .3 . Если все слагаемые в сумме имеют один и тот же знак, то предельная относительная погрешность суммы не превышает наибольшей из предельных относи­тельных погрешностей слагаемых:

δ u ≤ . (1.14)

При вычислении разности двух приближенных чисел и = х - у её абсолютная погрешность, согласно теоре­ме 2, равна сумме абсолютных погрешностей уменьша­емого и вычитаемого, т. е. Δ u = Δ x + Δ y , а предельная относительная погрешность

δ u = .(1.15)

Из формулы (1.15) следует, что если приближенные значения х и у близки, то предельная относительная по­грешность будет очень большой.

В некоторых случаях удается избежать вычисления разности близких чисел с помощью преобразования выра­жения так, чтобы разность была исключена.

Если представляется сложным заменить вычитание близких приближенных чисел сложением, то следует поступать так: если известно, что при вычитании долж­но пропасть m первых значащих цифр, а в результате требуется сохранить п верных цифр, тогда в уменьшае­мом и вычитаемом следует сохранять m + п верных зна­чащих цифр .

Теорема 1 .4 . Предельная относительная погрешность произведения и = х× у приближенных чисел, отличных от пуля, равна сумме предельных относительных погрешно­стей сомножителей, т. е.

δ u = δ x + δ y . (1.16)

В частности, если и = kx, где k – точное число, имеем Δ u = |k| Δ x , δ и = δ х.

Теорема 1 .5 . Предельная относительная погрешность частного равна сумме предельных относительных по­грешностей делимого и делителя.

 

Возможно, будет полезно почитать: